Marie Pierre Chapuis


Contact details


PhD. University of Montpellier, France 2006 (Supervisors: A. Estoup, Y. Michalakis & M. Lecoq)

MSc. University of Montpellier, France 2002 (Supervisor: A. Estoup

Professional Employment

2009 - current, CIRAD Researcher, France - Honorary Research Affiliate of the School of Biological Sciences, Sydney, Australia

2007 - 2009, Marie-Curie Outgoing International Fellow, CBGP, Montpellier and University of Sydney, Australia, with G.A. Sword and S. J. Simpson 

Main Research Interests

My research is mainly focused on population evolution of locust species. These crop pests are subject to huge and unpredictable increases in population density, associated with a switch from the shy and cryptic to the highly active and aggregative behavior (phase polyphenism). I use molecular and evolutionary ecology to understand the environmental conditions leading to the evolution of population outbreaks and extreme density-dependent phenotypic plasticity in these species. In our lab we mainly focus on the Desert locust, Schistocerca gregaria (picture: Antoine Foucart, Augrabies Falls, South-Africa).


Ongoing Research Projects

Evolutionary history and population dynamics of the desert locust
The desert locust is a polytypic species which is distributed in two distinct regions along the North-South axis of Africa. The nominal subspecies, S. g. gregaria, is one of the most widespread and harmful locust species with a huge potential invasion area in northern Africa. S. g. flaviventris is restricted to the south-western arid zone of Africa and swarms only rarely.  Our aims are to identify morphological and molecular diagnostic characters for desert locust subspecies, estimate key parameters of their independent evolutionary history (e.g. divergence time), better understand and compare their population structure and dynamics, inform on the divergence in propensity to gregarize, and characterize climatic causes behind each subspecies range limits. The natural variation in environments, genomes and phenotypes of the desert locust will serve to examine phase polyphenism with an integration of the functions of evolution (neutral drift and adaptive divergence), ecology (how fitness effects of phase translate in ecological performance of populations) and genetics (genes involved in phenotypic plasticity).

Quantitative genetics of phase polyphenism
The aim is to inform on reaction norms of polyphenic traits (e.g. larval behavior, larval growth, adult morphology) in a complex environment, and on the associated genetic parameters (heritability of traits, genetic correlations between growth environments and between components of phase). We hope to disentangle the effect of growth conditions from the effect of phase on the plastic response of locusts. This biological knowledge will serve for building an individual-based model to simulate the demo-genetics dynamics of locust populations.  

The Migratory locust in Palavas
The ‘Palavas grasshopper' is a giant form of the migratory locust, Locusta migratoria, populations of which are located in the lagoon ecosystem delimited by the estuaries of the Rhône and Hérault rivers. A preliminary study showed that the Palavas form was genetically isolated from neighboring populations, which are themselves highly interconnected along the Mediterranean coast. Evolutionary causes and proximal mechanisms for the morphological divergence and genetic isolation of Palavas populations are enigmatic to date. We use a transect sampling method and combine microsatellite genotyping, and morphological and ecological data to characterize further the genetic isolation of populations from Palavas and identify factors that shape its isolation.

Molecular evolution of microsatellite markers in the Orthoptera
Microsatellite loci of Orthopteran species, which are characterized by giant genomes, are prone to high levels of heterozygosity, high prevalence of null alleles and high similarity between their flanking regions. My questions hence ask for an improved understanding of the peculiar molecular evolution of the microsatellite markers in this Order. The accuracy of inferences on evolutionary history or population demography from microsatellite data is highly dependent on this knowledge.  


Chapuis, M.-P., Foucart, A., Plantamp, P. Blondin L., Leménager N., Benoit L., Gay P.-E. and C.S. Bazelet. 2017. Genetic and morphological variation in non-polyphenic southern African populations of the desert locust. African Entomology, in press.

Piry S., Chapuis M.P., Gauffre B., Papaïx J., Cruaud A., Berthier K. 2016. Mapping Averaged Pairwise Information (MAPI): A new exploratory tool to uncover spatial structure. Methods in Ecology and Evolution 7(12): 1463-1475. [MAPI software]

Pélissié B., C. Piou, H. Jourdan, C. Pagès, L. Blondin and M.-P. Chapuis. 2016. Extra molting and selection on larval growth in the desert locust. PLoS ONE 11(5): e0155736.

Chapuis M.-P., C.S. Bazelet, L. Blondin, A. Foucart, R. Vitalis and M.J. Samways. 2016. Subspecific taxonomy of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae), based on molecular and morphological characters. Systematic Entomology 41: 516-530. 

Chapuis M.-P., C. Plantamp, R. Streiff, L. Blondin and C. Piou. 2015. Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. Molecular Ecology 24: 6107–6119.

Gauffre B., S. Mallez, M.-P. Chapuis, R. Leblois, I. Litrico, S. Delaunay and I. Badenhausser. 2015. Spatial heterogeneity in landscape structure influences dispersal and genetic structure: empirical evidence from a grasshopper in an agricultural landscape. Molecular Ecology 24: 1713-1728.

Sun J.T., X.Y. Jiang, Y.K. Zhang, M.-P. Chapuis, M.M. Wang, X.M. Yang, C. Ge, X.F. Xue and X.Y. Hong. 2015. Evidence for high dispersal ability and mito-nuclear discordance in the small brown planthopper, Laodelphax striatellus. Scientific Reports 5: 8045.

Chapuis M.-P., P. Plantamp, L. Blondin, C. Pagès, J.-M. Vassal and M. Lecoq. 2014. Demographic processes shaping genetic variation of the solitarious phase of the desert locust. Molecular Ecology 23: 1749–1763. [CIRAD summary]

Blondin L., L. Badisco, C. Pagès, A. Foucart, A.-M. Risterucci, C.S. Bazelet, J. Vanden Broeck, H. Song, S. Ould Ely and M.P. Chapuis. 2013. Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust. Journal of Applied Entomology, 137 (9) : 673-683.

Umbers K., S. Dennsion, C. Manahan, L. Blondin, C. Pages, A.-M. Risterucci and M.-P. Chapuis. 2012. Microsatellite markers for the chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae), an Australian alpine specialist. International Journal of Molecular Sciences 13: 12094-12099.

Ma C., P. Yang, F. Jiang, M.-P. Chapuis, Y. Shali, G.A. Sword and L. Kang. 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology 21: 4344–4358.

Blanchet E., M. Lecoq, G.A. Sword, C. Pagès, L. Blondin, C. Billot, R. Rivallan, A. Foucart, J.-M. Vassal, A.-M. Risterucci and M.-P. Chapuis. 2012. Population structures of three Calliptamus spp. across the Western Mediterranean Basin. European Journal of Entomology 109: 445-455. 

Babin R., C. Fenouillet, T. Legavre, L. Blondin, C. Calatayud, A.-M. Risterucci and M.-P. Chapuis. 2012. Isolation and characterization of twelve polymorphic microsatellite loci for the cocoa mirid bug Sahlbergella Singularis. International Journal of Molecular Sciences 13: 4412-4417. 

Chapuis M.-P., R. Streiff and G.A. Sword. 2012. Long microsatellites and unusually high levels of genetic diversity in the Orthoptera. Insect Molecular Biology 21: 181-186.

Blanchet E., M. Lecoq, G. A. Sword, K. Berthier, C. Pages, C. Billot, R. Rivallan, A. Foucart, J.-M. Vassal, A.-M. Risterucci and M.-P. Chapuis. 2012. A comparative analysis of fine-scale genetic structure in three closely-related syntopic grasshopper species (Calliptamus sp.). Canadian Journal of Zoology 90: 31–41.

Chapuis M.-P., S.J. Simpson, L. Blondin & G.A. Sword. 2011. Taxa-specific heat shock proteins are over-expressed with crowding in the Australian plague locust. Journal of Insect Physiology 57 (11): 1562-1567.

Chapuis M.-P., J.-A. Popple, K. Berthier, S. J. Simpson, T. Deveson, P. Spurgin, M. J. Steinbauer and G. A. Sword. 2011. Challenges to assessing connectivity between massive populations of the Australian Plague locust. Proceedings of the Royal Society of London B 278(1721): 3152-3160.

Ponton F., M.-P. Chapuis, M. Pernice, G.A. Sword and S.J. Simpson. 2011. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. Journal of Insect Physiology 57(6): 840-850. 

Chapuis M.-P., D. Tohidi-Esfahani, T. Dodgson, L. Blondin, F. Ponton, D. Cullen, S.J. Simpson and G.A. Sword. 2011. Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust. BMC Molecular Biology 12: 7.

Berthier K., M-P. Chapuis, S.M. Moosavi, D. Tohidi-Esfahani and G.A. Sword. 2011. Nuclear insertions and heteroplasmy of mitochondrial DNA as two sources of intra-individual genomic variation in grasshoppers. Systematic Entomology 36: 285-299.

Chapuis M.-P.*, K. Berthier K.*, S.J. Simpson, H-J. Ferenz, C.M. Habib Kane, L. Kang, A. Lange, S.R. Ott, M.A. Ould Babah, K.W. Rodenburg, S.M. Rogers, B. Torto, J. Vanden Broeck, J.J.A. Van Loon and G.A. Sword. 2010. Laboratory populations as a resource for understanding the relationship between genotypes and phenotypes:  A global case study in locusts. Advances in Insect Physiology 39: 1-37 (* equal contributors).

Chapuis M.-P., L. Crespin, A. Estoup, A. Augé-Sabatier, A. Foucart, M. Lecoq, and Y. Michalakis. 2010. Parental crowding increases investment to reproduction in Locusta migratoria females. Bulletin of Entomological Research 100: 9-17.

Chapuis M.-P., A. Loiseau, Y. Michalakis, M. Lecoq, A. Franc, and A. Estoup. 2009. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: a regional scale comparative survey. Molecular Ecology 18: 792-800.

Chapuis M.-P., M. Lecoq, Y. Michalakis, A. Loiseau, G. A. Sword, S. Piry, and A. Estoup. 2008.  Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Molecular Ecology 17(16): 3640-3653.

Chapuis M.-P., J.-A. Popple, S. J. Simpson, M. Steinbauer, L. McCulloch, A. Estoup, J.-F. Martin, and G. A. Sword. 2008. Eight polymorphic microsatellite loci for the Australian plague locust, Chortoicetes terminifera. Molecular Ecology Resources 8:1414-1416.

Chapuis M.-P., A. Estoup, A. Augé-Sabatier, A. Foucart, M. Lecoq, and Y. Michalakis. 2008. Genetic variation for parental effects on propensity to gregarise in Locusta migratoria. BMC Evolutionary Biology 8: 37.

Chapuis, M.-P., and A. Estoup. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24(3): 621-631. [FreeNA software]

Pascual., M., M.P. Chapuis, F. Mestres, J. Balanyà, R.B. Huey, G.W. Gilchrist, L. Serra, and A. Estoup. 2007. Introduction history of Drosophila subobscura in the New World: a microsatellite based survey using ABC methods. Molecular Ecology 16(15): 3069-3083.

Chapuis, M.-P., A. Loiseau, Y. Michalakis, M. Lecoq, and A. Estoup. 2005. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Molecular Ecology Notes 5: 554-557.

Il semble que vous naviguiez depuis un appareil de type 'bureau'

Tester plus en détail