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a b s t r a c t

Understanding how environmental factors structure communities is important in conservation biology
and ecosystem management. The aim of this study was to test the hypothesis that a plant-feeding
nematode community composed of six species is structured by soil type and climate at the landscape
scale, and that niche partitioning via these factors is consistent with the coexistence of the species.
Martinique has an impressive diversity of abiotic factors (climate and soil type) over a relatively small
land area, which facilitates the study of how soil type and climate affect the nematode community.

We conducted this study by building an extensive data set containing the abundance of each nema-
tode species on banana (3708 samples and 5,673,705 nematodes) in a wide range of sites in Martinique.
The data set also contained environmental data (soil, climate) and plantation age. We analyzed the
response of each nematode species to climate and soil type with a generalized linear model in order to
understand whether niche partitioning of factors could contribute to the coexistence of the nematode
species.

Temperature, rainfall, soil type, and plantation age significantly affected the abundance of the six
nematode species. While some pairs of species shared the same environmental niches, other showed
clear niche partitioning along climatic axes. The two dominant species, Radopholus similis and Heli-
cotylenchus multicinctus, have similar convergent ecological niches regarding climate, soil type, planta-
tion age, and host range. These two species, which often co-occur, probably have different resources at
the root scale. Soil type and climate structure plant-feeding nematode species community at the island
scale. Further studies need to evaluate coexistence at the root scale among dominant species.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding how communities of competing species are
structured at the landscape scale is important in conservation
biology, e.g., for predicting coexistence following biological invasions
(Dangles et al., 2008), and in ecosystem management, e.g., for pre-
dicting the development of pest populations (Teodoro et al., 2008).
The geographic distribution of species is influenced by niche
requirements (i.e., by the effect of environmental factors on life-
history traits) and by interspecific interactions such as competition
(Costa et al., 2008). Stable coexistence in communities is predicted at
larger scales when competing species have niche partitioning
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mechanisms that reduce interspecific competition (Gilbert et al.,
2008). At landscape scale, communities of competing species are
usually structured by niche partitioning among abiotic factors. This is
the case for soil nematodes communities, which are structured
mostly by soil type and climatic factors (Bongers and Ferris, 1999;
Cadet et al., 2003; Ferris and Matute, 2003).

Because the soil nematode community structure is widely used
as a bioindicator of ecosystem changes (Bongers, 1990) and because
soil nematodes affect plant growth and vigour (Freckman and
Caswell, 1985; Coleman, 2008), understanding how niche parti-
tioning contributes to the coexistence of soil nematodes is impor-
tant (Ettema et al., 1998; Bongers and Ferris, 1999). The study of the
effect of abiotic factors such as climate and soil type on the
community structure of plant-feeding nematode in the field is
difficult for at least two reasons. First, it is difficult to separate the
effect of plants and the effects of the abiotic environment because

mailto:duyck@cirad.fr
www.sciencedirect.com/science/journal/00380717
http://www.elsevier.com/locate/soilbio
http://dx.doi.org/10.1016/j.soilbio.2011.09.014
http://dx.doi.org/10.1016/j.soilbio.2011.09.014
http://dx.doi.org/10.1016/j.soilbio.2011.09.014


P.-F. Duyck et al. / Soil Biology & Biochemistry 44 (2012) 49e5550
plant-feeding nematodes are greatly affected by their host plants
(Yeates, 1999; Brinkman et al., 2008; Duyck et al., 2009) whose
distribution is greatly affected by abiotic factors (Yeates and Boag,
2004). Second, the distribution of nematodes at landscape scale
may result from dispersal by humans and may therefore reflect
invasion history.

The study of the plant-feeding nematode community in the
banana agroecoystem on the island of Martiniquemay reduce these
two difficulties. First, although plant-feeding nematodes in banana
agroecosystems are linked to host plants, the significance of host
plant as a variable is reduced because the same host plant (banana)
is grown widely on the island; it is therefore easy to restrict
sampling to one host. Second, like many volcanic tropical islands,
Martinique has an impressive diversity of abiotic factors (climate
and soil type) in a relatively small area, which facilitates the study
of these factors. In a radius of less than 10 km, soil type and climate
may vary substantially. Because rainfall is linked to topographic
relief and because elevation of banana plantations on Martinique
range from 0 to more than 500 m a.s.l., annual rainfall can range
from 1000 mm at sea level to >6000 mm at higher elevations.
Given this great range of climate and also a great range in the
nature and age of the source rocks, soil on Martinique is quite
variable.

To understand the effects of abiotic factors on the community
structure of plant-feeding nematodes, we studied six species of
plant-feeding nematodes in competition on the same host plant
(Musa spp., AAA group, cv. Cavendish Grande Naine). Worldwide,
bananas are attacked by many species of plant-feeding nematodes
but only a few causes economically important damage (Quénéhervé,
2009). InMartinique, the nematode community parasitizing bananas
comprisesmigratoryendoparasites and sedentaryendoparasites. The
migratory endoparasites include the burrowing nematode Rado-
pholus similis (Cobb, 1893) Thorne, 1949; the lesion nematode Pra-
tylenchus coffeae Goodey, 1951; the spiral nematode Helicotylenchus
multicinctus (Cobb, 1893) Sher, 1961; and the lance nematode Hop-
lolaimus seinhorsti Luc,1958. The sedentaryendoparasites include the
root-knot nematodes,Meloidogyne spp., and the reniform nematode
Rotylenchulus reniformis Linford & Oliviera, 1940. While all these
species exploit the same resource (plant roots) and are able to
parasitize a wide variety of host plants (Luc et al., 2005; Duyck et al.,
2009), they differ in life history (sedentary versus migratory species)
and reproductive strategy (parthenogenetic vs. amphimictic and
syngonic species).

In this study, we tested the hypothesis that this plant-feeding
nematode community composed of six species is structured by
soil type and climate at landscape scale. We conducted this study
by building an extensive data set that contained the abundance of
each nematode species on banana and associated environmental
information inmany different locations onMartinique. Our analysis
also included the time elapsed since planting (¼plantation age)
because host-plant quantity and quality change as the plant ages
and because plant-feeding nematodes are greatly affected by root
quantity and quality (Van der Stoel et al., 2006). We analyzed the
response of each nematode species to climate and soil type using
a generalized linear model in order to understand whether niche
partitioning of these factors could contribute to the coexistence of
the nematode species.

2. Materials and methods

2.1. Field data collection

A systematic survey of nematode infestation on bananas was
undertaken between 2003 and 2009. All banana root samples were
collected in commercial banana plantations of Martinique (French
West Indies, 14�N, 61�W). Mean annual temperature and cumula-
tive annual rainfall in the different locations on Martinique were
provided for a 30-year period by Météo-France Martinique, Service
Climatique (Fig. 1).

Soil types (young soils on pumice, andosols, nitisols, ferralsols,
vertisols, and fluvisols) were determined using a soil type map
(Colmet-Daage et al., 1969). Young soils (containing sandy primary
minerals and allophane in the clay fraction) are composed of many
tubular mesopores (from 3 to 30 mm diameter) and macropores
(from 30 to 300 mm diameter) that allow high hydraulic conduc-
tivity at saturation (Ksat) (Cabidoche et al., 2009). Andosols (con-
taining mainly allophane) have a high hydrological conductivity
(Ksat ¼ 50e200 mm h-1) and have substantial meso- and macro-
porosity but that porosity can be irreversibly damaged by heavy
ploughing. Nitisols contain mainly halloysite and have many mac-
ropores (Ksat ¼ 10e70 mm h-1). In ferralsols, the primary materials
have been degraded and Fe-oxihydroxides have accumulated,
resulting in cementation of the clay fraction. Ferralsols are clayey
(>90% clay) but the clayeymaterials combinewith organicmatter to
produce sand-like aggregates, such that macropores are abundant
(Ksat ¼ 20e150 mm h-1). Vertisols usually have poor meso- and
macroporosity. Whenwet, vertisols have only few pores as wide as
3e300 mmand a very lowwater conductivity (Ksat¼ 1e10mmh-1);
pores >3 mm occur in vertisols only when these soils are dry,
which is also when megapores (>300 mm) appear. Fluvisols, which
occur on fluvial terraces, result from erosion of upper lands
(Ksat ¼ 10e50 mm h-1).

2.2. Laboratory identification

Each root sample was collected from 10 adjacent banana plants.
Root samples were carefully washed, cut into 0.5-cm lengths, and
thoroughly mixed in the laboratory. The nematodes were then
extracted from a 20-g fresh root subsample using the maceration
and centrifugal-flotation method (Coolen and D’Herde, 1972).
Nematode abundance was expressed as number per 100 g of fresh
roots. Nematodes were identified to species by examining living or
fixed specimens with a stereomicroscope. The entire database
comprised 3708 samples and 5,673,705 specimens of plant-feeding
nematodes identified to species. Number of sampling points for
fluvisol, andosol, young soil on pumice, ferralsol, nitisol and vertisol
were 378, 618, 834, 210, 1470 and 198, respectively.

2.3. Statistical analyses

Nematode abundance data were analyzed using a Poisson log-
linear model (analysis of deviance with Poisson error) as a func-
tion of species, temperature, rainfall, soil type, plantation age, and
interactions. We used standard simplification procedures to elim-
inate non-significant terms from the model. The significance of
each term was assessed through the change in deviance between
models with and without that term. Overdispersion was accounted
for using quasi-Poisson instead of Poisson models in R (O’Hara and
Kotze, 2010). We started from the most complex model (including
all interactions) and kept eliminating higher-order terms as long as
they remained insignificant (Crawley, 1993). All models were fitted
using R (R Development Core Team, 2010).

3. Results

Temperature, rainfall, soil type, and plantation age significantly
affected the abundance of the six nematode species (Table 1). The
significant interactions between these factors and the species factor
indicate that the six species react differently to these factors. The
interaction between temperature, rainfall, and soil type, however,



Fig. 1. Rainfall, temperature, soil types, and sampling locations on Martinique. a. Mean annual rainfall (mm) from 1971 to 2000; b. Mean annual temperature (�C) from 2007 to
2008; c. Distribution of soil types (Colmet-Daage and Lagache, 1965); d. Distribution of sampling points.

Table 1
Results of the analysis of deviance for the abundance of six plant-feeding nematode
species in Martinique. Only those effects retained in the final model (see Methods)
are presented. Ddev corresponds to changes in deviance. The residual deviance and
df relate to the reference model. P values indicate the significance of the effect.
sp ¼ species, d ¼ duration after plantation, t ¼ mean annual temperature, r ¼ mean
annual rainfall, soil ¼ soil type.

Effect Ddf Ddev Residual df Residual dev P value

sp 5 6,802,457 3702 13,543,400 <0.0001
d 1 245,195 3701 13,298,205 <0.0001
t 1 265,243 3700 13,032,962 <0.0001
r 1 131,679 3699 12,901,283 <0.0001
soil 5 584,755 3694 12,316,528 <0.0001
sp � d 5 154,001 3689 12,162,527 <0.0001
sp � t 5 233,657 3684 11,928,870 <0.0001
sp � r 5 92,745 3679 11,836,125 0.0023
sp � soil 25 717,637 3654 11,118,488 <0.0001
d � soil 5 316,967 3649 10,801,521 <0.0001
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was not significant, indicating that the effect of climate was inde-
pendent from that of soil type. The significant interaction between
plantation age and soil type indicated that change in nematode
abundance with time since planting differed among soil types.

R. similis and H. multicinctuswere most abundant in the dry and
cool areas of the island (Fig. 2). P. coffeae andMeloidogyne spp. were
most abundant in wet and cool areas, while R. reniformis and
Hoplolaimus seinhorstiiweremost abundant in dry and warm areas.
Overall, Meloidogyne spp, H. multicinctus, and R. similis were most
abundant compared to the three other species. The abundance of
P. coffeae was intermediate while the abundances of R. reniformis
and H. seinhorstii were the lowest of the six species.

The relative composition of the nematode community depen-
ded on soil type (Table 1; Fig. 3). H. multicinctuswas abundant in all
soil types, especially in young soils on pumice and in nitisols, where
it represented about 50% of all plant-feeding nematodes. The
presence of some species greatly depended on soil type; for
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Fig. 2. Influence of temperature (t, �C) and rainfall (r, mm) on the abundance (number/100 g of fresh root) of six nematode species. rad: Radopholus similis, hel: Helicotylenchus
multicinctus, pra: Pratylenchus coffeae, hop: Hoplolaimus seinhorsti, mel: Meloidgyne spp., rot: Rotylenchulus reniformis. Because there was no interaction between climate (rainfall
and temperature) and soil type and plantation age, the effect of climate is presented using data from andosols and 3-year-old banana plants. For other soil types and plant ages, the
absolute values may differ but the effect of temperature and rainfall will be the same.
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example, P. coffeae was abundant in ferralsols but absent from
nitisols and vertisols. Contrary to nematode communities in other
soil types, communities in vertisols were dominated by large
numbers of H. multicinctus and Meloidogyne spp. and contained
only small number of the other nematode species.

Plantation age strongly influenced nematode abundance, and
depended on species and soil type (Table 1). On nitisols, the
abundances of R. similis, H. multicinctus, andMeloidogyne spp. were
high at planting and continued to increase over time (Fig. 4A). In
contrast, the abundances of H. seinhorsti, P. coffeae, and R. reniformis
were low at planting and decreased over time (Fig. 4B). The pattern
was different in the andosols, which had low abundances of
R. similis, H. multicinctus, and Meloidogyne spp. (Fig. 5A) at planting
and increasing abundances of P. coffeae and R. reniformis over time
(Fig. 5B).
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Fig. 3. Relative abundance of plant-feeding nematodes in relation to soil type (after 3
years at 27 �C with average rainfall of 3100 mm). rad: Radopholus similis, hel: Heli-
cotylenchus multicinctus, pra: Pratylenchus coffeae, hop: Hoplolaimus seinhorsti, mel:
Meloidgyne spp., rot: Rotylenchulus reniformis.
4. Discussion

4.1. Influence of environmental factors on species abundance

Temperature, rainfall, and soil type strongly influenced the
abundances of the six species of plant-feeding nematodes common
in Martinique banana plantations. In our study, the abundance of
R. similis decreased as rainfall increased. This observation agrees
with previous studies that reported a decline in numbers of
R. similis during wet seasons (Jimenez, 1972; McSorley and Parrado,
1981; Hugon et al., 1984; Quénéhervé, 1989). Recent experimental
results also confirm that R. similis survivorship is shorter in water-
saturated soils than in drier soils in both andosols and nitisols
(Chabrier et al., 2010). The abundance of H. multicinctus, also
decreased with increasing rainfall. This behaviour has already been
observed on plantains in the Caribbean (Hutton, 1978). P. coffeae is
a pantropical species that was first observed in the roots of plan-
tains in Grenada and described as Tylenchus musicola by Cobb in
1919. In our study, the abundance of P. coffeae greatly decreased as
rainfall decreased, and this could explain why P coffeae abundance
increases with elevation. Although Pratylenchus spp. can enter
a state of anhydrobiosis (Glazer and Orion, 1983; Townshend, 1984)
and thereby survive dry conditions, this species is probably unable
to increase its numbers in dry conditions.

Based on experiments in growth chambers, the reproduction of
different isolates of R. similis and of different species of Pratylenchus
is highest between of 25 and 30 �C (Radewald et al., 1971; Fallas and
Sarah, 1995; Pinochet et al., 1995). In addition, the multiplication
rate of R. similiswas always 3e5 times greater than that of P. coffeae
(Pinochet et al., 1995).

Whereas Meloidogyne spp. was more abundant in wet and cool
areas (higher elevation), R. reniformis was more abundant in dry



Fig. 4. Change in nematode abundance as a function of plantation age in nitisols (27 �C, 3100 mm). Nematode abundance is expressed as number per 100 g of fresh roots. rad:
Radopholus similis, hel: Helicotylenchus multicinctus, pra: Pratylenchus coffeae, hop: Hoplolaimus seinhorsti, mel : Meloidgyne spp., rot: Rotylenchulus reniformis.
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and warm areas (sea level). Both species are sedentary endopara-
sites that share the same ecological niches (secondary and tertiary
banana roots) and that can be competitively excluded R. similis or
P. coffeae. The geographic distributions of Meloidogyne spp. and
R. reniformis are strongly influenced by soil type (especially clay
content) and soil ionic content (Koenning et al., 1996; Le Saux and
Quénéhervé, 2002).

The abundance of the six nematode species responded differ-
ently to the different soil types. Inparticular, abundances in vertisols
were very different from those in other soils, in part because ver-
tisols supported very small numbers of both R. similis and P. coffeae.
In contrast, P. coffeaewas very abundant in ferralsols in Martinique,
which confirms observations that P. coffeae is muchmore abundant
than R. similis in ferralsols in Cameroon and Gabon (Loubana et al.,
2007). These different responses may be linked to differences in
soil porosity. Because of their diameters, R. similis and P. coffeae
require soil pores that have water films and diameters of
30e300 mm in order tomove through the soil (Wallace, 1959,1968).
In vertisols, these two conditions rarely occur together. Thus,
nematode movement in vertisols is restricted to a short time when
rain occurs just after tillage. A species with a low ability to survive
suboptimum conditions, such as R. similis, is unlikely to increase in
Fig. 5. Change in nematode abundance as a function of plantation age in andosols (27 �C, 3
Radopholus similis, hel: Helicotylenchus multicinctus, pra: Pratylenchus coffeae, hop: Hoplolai
number in vertisols. In contrast, specieswith ahigh ability to survive
suboptimum conditions, such as H. multicinctus and Meloidogyne
spp., are able to persist and then increase in number in the short
periodswhen conditions are favourable in vertisols. Other soil types
in Martinique contain numerous pores of favourable diameter
(30e300 mm) and often have favourable water potential (�1 to
�10 kPa); in these soils, even species with a low ability to survive
adverse conditions are able to increase in number.

Fertility may vary regarding of soil type (young soils on pumice
have 2.5e5.9% of organic matter; andosols 2.2e10.5%; nitisols,
ferralsols, vertisols, and fluvisols between 2 and 3%). However the
nutrition of banana plants can be considered as optimal in all soil
types due to fertilization and irrigation that are optimized (Delvaux
et al., 1990). Climatic factors, those vary according to different zones
of Martinique (especially altitude), affect plant growth and devel-
opment. Because temperature is the main driver of banana plant
development, temperature variations (between 23.5 and 28 �C of
annual mean values) lead to a cropping cycle (time between two
consecutive harvests) comprised between 7 and 12 month.
Nevertheless, the fact that cropping cycles overlap leads to a rela-
tively constant production of root biomass all over the production
period. The main damage of plant-parasitic nematodes on banana
100 mm). Nematode abundance is expressed as number per 100 g of fresh roots. rad:
mus seinhorsti, mel : Meloidgyne spp., rot: Rotylenchulus reniformis.
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plant is the topple over due to root necrosis, thus reducing the
anchoring capacity of plants. In intensive production, fields are
fertilized in excess (between 300 and 500 kg of N every year, while
only 100 are exported) leading to a moderate effect of plant-
parasitic nematodes on the nutrition of the banana plant.

Because the studied nematodes are able to complete many life-
cycles within banana root tissues without passing through soil,
direct interaction between these nematodes and other soil organ-
isms such as earthworm is not probable (Lafont et al., 2007).
However indirect impact of earthworms on nematodes community
viamodified soil composition and structure is possible (Lavelle et al.,
1992; Lafont et al., 2007). In this paper we studied the influence of
environment at the landscape, however, modifications of the local
environment at the root scale will also influence the community of
plant-feeding nematodes and need to be further studied.

4.2. Niche partitioning and coexistence

Some pairs of species seem to share the same climatic niche. For
example, both R. similis and H. multicinctus prefer relatively dry and
warm conditions. Coexistence of these two species is probably the
result of weak interspecific competition because they partition
roots of different ages and conditions. Quénéhervé (1990) observed
successive multiplication of R. similis followed by H. multicinctus on
the same type of root. R. similis is able to increase quickly on the
fresh resource (undamaged roots) while H. multincinctus is able to
increase later by utilizing R. similis-damaged roots.When these two
species co-occur, there is a niche differentiation at the root scale:
R. similis restricts its niche to the cortical part of the rhizome while
H. multicinctus restricts its niche at a certain distance from the
rhizome where decomposing resource is present (Quénéhervé,
1990). At the field scale, the biomass of old roots increases more
quickly than that fresh roots, which explains the greater intrinsic
rate of increase for H. multicinctus than for R. similis on banana
(Tixier et al., 2008).

Other pairs of species show clear niche partitioning along
climatic axes. This is the case of the two most damaging nematode
species, P. coffeae and R. similis. At the island scale, these species
segregate along a climatic gradient and especially along a rainfall
gradient. This results from the different tolerances of these two
species to saturated vs. dry soils.

Compared to the abundances of other species, the abundances
of R. reniformis and H. seinhorstii were very low in banana planta-
tions on Martinique. While the two species occupy the same
climate and soil niches, they have different alternative host plants
(weeds) (Duyck et al., 2009).

4.3. Conclusion

The global distribution of nematode species reflects their origin,
natural dispersal, and human-mediated dispersion, while their
potential distributions are limited by their biological traits. On
a regional scale, assessment of the distribution of nematode species
should reflect not only the range of land use and vegetation but also
climate, topography, and soils. Moisture, temperature, and soil
type, as well as the presence of suitable host plants in the case of
plant-feeding nematodes greatly affect the distribution of terres-
trial nematodes (Yeates and Boag, 2004). Our study shows a clear
niche partitioning among some species according to these abiotic
factors. In contrast to the other studied species, the two dominant
species, R. similis and H. multicinctus, are very closely associated
with banana and have probably been introduced very recently,
probably with the introduction of banana plant material in the
Caribbean early in the 20th century (Marin et al., 1998). These two
species have convergent ecological niches regarding climate, soil
type, plantation age, and host range (Duyck et al., 2009). The four
other species were probably already present (being indigenous or
previously established) inMartiniquewhen bananawas introduced
and when R. similis and H. multicinctus colonized the island. These
previously established species are likely to partition their ecological
niches via host range (Duyck et al., 2009) and climate with the two
dominant species.
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