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a b s t r a c t

A stochastic individual-based model called COSMOS was developed to simulate the epidemiology of
banana weevil Cosmopolites sordidus, a major pest of banana fields. The model is based on simple rules
of local movement of adults, egg laying of females, development and mortality, and infestation of larvae
inside the banana plants. The biological parameters were estimated from the literature, and the model
was validated at the small-plot scale. Simulated and observed distributions of attacks were similar except
for five plots out of 18, using a Kolmogorov–Smirnov test. These exceptions may be explained by variation
anana weevil
urculionidae

ndividual-based model
ife-history traits
usa

patially explicit model

in predation of eggs and measurement error. An exhaustive sensitivity analysis using the Morris method
showed that predation rate of eggs, demographic parameters of adults and mortality rate of larvae were
the most influential parameters. COSMOS was therefore used to test different spatial arrangements of
banana plants on the epidemiology of C. sordidus. Planting bananas in groups increased the time required
to colonise plots but also the percentage of banana plants with severe attacks. Spatial heterogeneity of
banana stages had no effect on time required to colonise plots but increased the mean level of attacks.

key fa
est Indies Our model helps explain

. Introduction

Understanding the epidemiology of pests is of special impor-
ance for better management (Zadoks and Schein, 1979; Madden,
006). The spatial component of epidemiology is a crucial ele-
ent in the spread of damages from a localised inoculum or when

est dispersal is limited (Winkler and Heinken, 2007). Fecundity,
ortality, and dispersal are the driving forces of insect epidemiol-

gy (Schowalter, 2006, p. 137). Pests can disperse heterogeneously
Lopes et al., 2007). The dispersal behaviour of mobile stages
etween each host plant contributes greatly to explaining vari-
tions of local densities of the species (Coombs and Rodriguez,
007). In tropical and subtropical regions, where populations of
lants and pests are not synchronised by severe winters, all stages
f most insects are present simultaneously (Godfray and Hassell,

987). In these conditions, all stages should be considered simulta-
eously to understand the distribution and abundance of organisms

n the field. This approach is different from the ones in temper-
te regions, which focus on a particular part of the life cycle of

∗ Corresponding author. Tel.: +596 (0)596 42 30 58; fax: +596 (0)596 42 30 01.
E-mail address: fabrice.vinatier@cirad.fr (F. Vinatier).

304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2009.06.023
ctors of population dynamics and the epidemiology of this tropical pest.
© 2009 Elsevier B.V. All rights reserved.

insects that is considered as a key point of spatial patterning and
demography, such as attacks or dispersal behaviour of adults (e.g.
Cain, 1985; Brewster et al., 1997), egg laying of females (Zu Dohna,
2006), or post-embryonic stages (egg or larva) (e.g. Johnson et al.,
2007).

In this work, we took as case study the banana weevil Cos-
mopolites sordidus (Coleoptera: Curculionidae) (Germar. 1825), a
major pest of banana cropping systems. Larvae bore into the corm
of banana plants and damage the points of insertion of primary
roots, leading to plant snapping and toppling (Montellano, 1954;
Gold et al., 2001). C. sordidus can contaminate new banana plan-
tations through infested planting material or by means of adults
that have survived since the last banana planting, because it has a
long development time and life span, a low mortality rate, and is
able to survive without food for extended periods (2–6 months) in
moist environments (Gold et al., 2001). Adult weevils, which have
limited dispersal abilities, can also invade new plantations from
nearby plantations or from fallows when heavily infested banana

plots are transformed into fallows (Gold et al., 2001). Banana plant
stages may be heterogeneous in a plot, because plants are suc-
cessively replaced (as many as 50 times) by suckers emerging at
irregular intervals from a lateral shoot of the mother plant (Turner,
1994). This spatial heterogeneity of banana plant stages is likely to

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:fabrice.vinatier@cirad.fr
dx.doi.org/10.1016/j.ecolmodel.2009.06.023
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nfluence weevil population dynamics because of the influence of
anana stage on female egg laying (Cuillé, 1950; Vilardebo, 1973).
ased on these characteristics, we chose (i) a spatially explicit
pproach to understand how local movements influence the spatial
istribution and damages of this pest in relation to its habitat and
ii) an individual-based modeling (IBM) approach to help explain
bserved population patterns (Winkler and Heinken, 2007), consid-
ring that different behaviours at the individual level can lead to the
mergence of population-level properties (Grimm and Railsback,
005). Modeling was considered as a good means to implement
hese approaches and an IBM was chosen as the modeling frame-
ork.

In this paper, we present the COSMOS model, aimed at simu-
ating the spatial epidemiology of C. sordidus in the long-term by
escribing its population dynamics and the resulting infestation of
ost plants. The model considers all insect stages simultaneously
nd assumes there are individual variations in behaviour according
o each developmental stage. We hypothesised that the distribu-
ion of C. sordidus populations and attacks in banana fields can
e modelled according to epidemiological rules identified at an

ndividual level and calibrated from the literature, with a model
hat is less parameter-demanding than most IBMs. The COSMOS

odel, like many IBMs, aims at bridging the gap between individ-
al behavioural ecology and population dynamics (De Angelis and
ross, 1992). We validated COSMOS by comparing model outputs
ith field data, which is rarely done with most IBMs (Alderman

nd Hinsley, 2007; Charnell, 2008). Then, because sensitivity anal-
ses are key steps of the modelling processes (Parry et al., 2006;
rrignon et al., 2007), we first conducted an exhaustive sensitiv-

ty analysis using the Morris method (Morris, 1991) to identify the
ost influential parameters in our model. In a second step, these

arameters were studied in detail on an extended range of vari-
tion, including extreme values. Finally, we used COSMOS to test
ow planting patterns and the spatial heterogeneity of plant stages,
esulting from the variability of sucker appearance over cropping
ycles, could modify the time necessary to colonise the whole plot
nd the level of damage during three cropping cycles, when the
nitial weevil population was distributed along one side of the
lantation.

. Model description and parameterisation

.1. General features of the COSMOS model

The COSMOS model is a stochastic IBM that runs on a daily time
tep. It simulates the local movement and egg laying of females in
he field, infestation of larvae in banana plants, and the main fea-
ures of insect and host plant development (Fig. 1). According to
he model, individual C. sordidus disperse in a field that is repre-
ented by a grid with one banana plant per cell (grid area ranged
etween 144 and 441 m2). Plants pass through three distinct stages
ntil harvest: maiden sucker, preflowering, post-flowering. Just
efore flowering, a new sucker of the mother plant is selected that
rows simultaneously in the same cell. The time lag between two
onsecutive harvests, corresponding to a cropping cycle, is about
00 days (see Tixier et al. (2004) for details on banana cropping
ycles).

C. sordidus females lay eggs on banana plants, and larvae issued
rom these eggs bore into the corm of the plants. The stage dura-
ion of juveniles and the phenologic stages of banana plants are
emperature-dependent. In the COSMOS model, each C. sordidus is

n autonomous individual that has a set of rules for egg laying and
ovement behaviour, depending on the plant stage at the insect’s

urrent position. Males do not cause damage, and no data are avail-
ble on the influence of mating on egg laying. Therefore, males were
xcluded from the model.
ling 220 (2009) 2244–2254 2245

A rule is an algorithm specified by the modeller to define a
behaviour of individuals (Grimm and Railsback, 2005). The plat-
form used to develop the model was the CORMAS (Common-pool
Resource and Multi-Agents System) software (Bousquet et al.
(1998); see http://cormas.cirad.fr), which is based on the Smalltalk
object-oriented language (Visual Works 7.5, Cincom Softwares). The
architecture of the model was developed in accordance with Ginot
et al. (2002). Table 1 presents all the model parameters described
below and their estimated values.

2.2. Dispersion

Eggs, larvae, and pupae cannot disperse between banana plants,
and adults disperse slowly by crawling (Gold et al., 2001). Although
the banana weevil has functional wings, most observers have
reported that the weevil seldom, if ever, flies (Gold et al., 2001).
In banana fields planted in monoculture (1500–2200 plants/ha,
with standard planting distances of 2.4 m × 2.4 m), individuals do
not search for food in a large area; their behaviour rather cor-
responds to an area-restricted search response type (Morris and
Kareiva, 1991). The proportion of individuals that disperse to a
given banana plant can be estimated as a negative exponential
function of the distance to the plant (Schowalter, 2006). Adjust-
ing the data of Delattre (1980) and Gold et al. (2001) to such
a function, the probability (P) each time step of an adult mov-
ing to a given banana plant at distance d (in m) is the following
(Eq. (1)):

P = 0.06 e−0.62 d (1)

2.3. Egg laying and longevity of adults

Once inseminated, C. sordidus females can stay gravid for 15
months without renewed mating (Cuillé, 1950; Treverrow et al.,
1992). Authors disagree on the possible effect of age on egg laying
(Gold et al., 2001). Yet it is agreed that egg laying depends mainly on
two processes. First, egg laying probability and fecundity increase
over banana phenologic stages (Cuillé, 1950; Vilardebo, 1973); the
maximal probability of egg laying and fecundity occurs at the post-
flowering stage, see Table 1 (Koppenhofer, 1993; Abera-Kalibata
et al., 1999). Second, egg laying activity declines when the num-
ber of adults per plant increases (Cuillé, 1950; Koppenhofer, 1993;
Abera-Kalibata et al., 1999).

In our model, mating and the effect of age on egg laying are not
considered. Egg laying occurs for each female once a week, accord-
ing to the period found in the literature (Koppenhofer, 1993), and
follows a binomial distribution with a probability depending on the
stage of the host plant (flowering, preflowering and maiden sucker)
as estimated by Abera-Kalibata et al. (1999). If conditions for egg
laying are fulfilled, the fecundity of each female is assumed to be
Poisson-distributed (in accordance with Hilker et al. (2006)), with
parameter equal to 2.7 if the adult density exceeds a given threshold
(DE, Table 1) and 0.8 otherwise.

The maximal lifespan of adult of C. sordidus was estimated to
be 748 days (Froggatt, 1925; Gold et al., 2001). The mortality rate of
adults is often considered as constant during their lifespan (Godfray
and Hassell, 1989; Berec, 2002; Potting et al., 2005). To our knowl-
edge, no data are available on the predation rate of C. sordidus adults
in the field.

Following Bousquet et al. (2001), MR was calculated assuming a

discrete decreasing process, as a function of the maximum lifespan
(ML, in days, Table 1; Eq. (2)). We assumed a high mortality rate
(0.99) of adults from emergence to the maximum lifespan and a
constant daily mortality (MR). The shape of the survival schedule
exponentially decreases in those conditions and is convex (Carey,

http://cormas.cirad.fr/
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Fig. 1. Static structure of the spatially explicit model COSMOS in Unified Modeling Language (UML). Each box contains the name of a class in the first part, its key attributes
in the second part, and the rules in the third part. For example, an individual of class Adult moves according to the rule biology-movements ( ) and the key attributes
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ispersionCoeff1 and DispersionCoeff2. Class attributes are shared for all the individ
nstance (non-underlined names). Arrows between boxes signify inheritance, and si
tage and is associated with class Insect.

001):

R = 1 − (0.01)1/ML (2)

.4. Development and mortality of immature stages

The development of C. sordidus is driven by temperature
Kiggundu et al., 2003a). Eggs, larvae, and pupae have different
ntrinsic mortality rates; larvae are the most susceptible stage
Traore et al., 1993, 1996; Kiggundu et al., 2003b). However, eggs
aid on the surface of the corm are exposed to additional mortal-
ty by predators, e.g. ants (Koppenhofer, 1993; Abera-Kalibata et al.,
007, 2008). Mortality rates of immatures and additional mortality
esulting from predators are shown in Table 1.

In the model, the physiological age for each juvenile stage i

ncreases each day, at a rate determined by the difference between
he daily temperature and a thermal threshold corresponding to
tage i. Daily temperature was calculated as the mean between
inimum and maximum temperature. Table 1 presents the ther-
al constants, i.e. the number of degree-days above the thermal
f the class (underlined names) and instance attributes have a specific value for each
inks signify association. For example, an individual of class Adult inherits from class

threshold required to complete development from stage i to the
i + 1th stage. Mortality at stage i follows a binomial distribution
based on a constant mortality rate, because the literature gives only
cumulative mortality rates at the end of each stage.

2.5. Development of banana plants

The thermal threshold for banana-plant development was esti-
mated to be 14 ◦C (Ganry, 1980), and the duration in degree-days of
each stage from planting to harvesting was determined by Abera-
Kalibata (1997) and Tixier et al. (2004) (Table 1). In the COSMOS
model, flowering rate follows a normal distribution (mean = 2350
degree-days; � = 200 degree-days), adapted from Tixier et al.
(2004). The sucker of the following cycle is selected after 2180
degree-days (Tixier et al., 2004).
2.6. Infestation of banana plants

Damage resulting from adult C. sordidus feeding is negligible
compared to that resulting from larvae (Gold et al., 2001). When
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Table 1
Model parameters, their values and ranges for sensitivity analyses, and corresponding references.

Description Code Value Range used for the first
sensitivity analysis

References

Egg
Thermal constant to reach next stage

(degree-days)
TCE 89 80.1–97.9 Gold et al. (2001)

Thermal threshold for development
(◦C)

TTE 12 10.8–13.2 Gold et al. (2001)

Mortality rate for eggs MRE 0.11 0.09–0.12 Kiggundu et al. (2003a,b)
Proportion of eggs removed by

predators
PE 0.6 0.33–0.68 Koppenhofer (1993) and Abera-Kalibata et al. (2008)

Larva
Thermal constant to reach next stage

(degree-days)
TCL 537.9 484.1–591.7 Traore et al. (1996)

Thermal threshold for development
(◦C)

TTL 8.8 7.9–9.7 Traore et al. (1996)

Mortality rate for larvae MRL 0.48 0.32–0.64 Kiggundu et al. (2003a,b)
Diameter of gallery (in cm) G 1 0.8–1.2 Montellano (1954) and Sponagel et al. (1995)

Pupa
Thermal constant to reach next stage

(degree-days)
TCP 120.7 108.6–132.8 Traore et al. (1996)

Thermal threshold for development
(◦C)

TTP 10.1 9.09–11.11 Traore et al. (1996)

Mortality rate for pupae MRP 0.18 0.095–0.265 Traore et al. (1996)

Adult
Sex-ratio (male:female) – 1:1 – Gold et al. (2001)
Sexual maturity for females after

emergence (days)
SM 34.5 33–36 Cuillé (1950)

Probability of egg-laying on maiden
sucker compared to flowered plants

OPMS 0.11 0.08–0.13 Estimated from Abera-Kalibata (1997)

Probability of egg-laying on
preflowered plants compared to
flowered plants

OPPF 0.41 0.39–0.46 Estimated from Abera-Kalibata (1997)

Number of adults per week
necessary for density-dependent effect
on fecundity

DE 20 10–33 Abera-Kalibata (1997)

Number of eggs per week per female
without density-dependent effect

FH 2.7 1.7–3.2 Koppenhofer (1993)

Number of eggs per week per female
with density-dependent effect

FL 0.8 0.6–1.1 Koppenhofer (1993)

Proportion of individuals moving 2 m
per time step (%)

DC1 1.4 1.5–6.6 Delattre (1980)

Proportion of individuals moving 4 m
per time step (%)

DC2 0.3 0.0–3.0 Delattre (1980)

Maximum lifespan of adult (days) ML 748 520–900 Estimated from Froggatt (1925)

Banana plant
Interval planting–maiden sucker

(degree-days)
– 800 – Estimated from Abera-Kalibata (1997)

Interval planting–preflowering
(degree-days)

1600 Estimated from Abera-Kalibata (1997)

Interval planting–post-flowering
(degree-days)

2350 Tixier et al. (2004)

Standard deviation for flowering rate
(degree-days)

200 Adapted from Tixier et al. (2004)

Appearance of first sucker
(degree-days)

2180 Tixier et al. (2004)

Interval planting–harvesting
(degree-days)

3250 Tixier et al. (2004)

◦
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Thermal threshold ( C) 14
Maximal circumference of plant at

arvesting (cm)
60

arvae are ready to pupate, they burrow toward the outer surface of
he corm (Froggatt, 1925). The attacked circumference (AC), mea-
ured at the outer surface of the corm of each banana plant, is a
ommon indicator of damage; it is assumed to be proportional to
he number of galleries bored by the larvae. When the whole cir-

umference of the corm is attacked, eggs and larvae die because of
esource limitation (Koppenhofer and Seshu Reddy, 1994).

In the model, at each time step, the attacked circumference
AC) is estimated as the total number of larvae that have reached
mergence multiplied by the mean diameter of a gallery (i.e. 1 cm
Ganry (1980)

according to Montellano (1954) and Sponagel et al. (1995)). The
maximum value of AC is equal to the maximum circumference of
the banana plant at harvest.

3. Materials and methods
3.1. Field data

Damages of C. sordidus on banana plants were measured on 18
plots during two cropping cycles at the CIRAD experimental station,
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Fig. 2. Spatial arrangements of banana plants used in simulations: regular planting (1), double row planting (2), patch planting (3), regular planting with heterogeneity of
banana stages (4). Color gradation figures from white to black the different banana stages from the youngest to the oldest, respectively. Planting density is 1750 plants/ha
everywhere.

Fig. 3. Observed and simulated distribution of banana damages in 18 plots infested by Cosmopolites sordidus in Guadeloupe. Distributions are depicted by probability densities.
Simulated probability densities were obtained over 100 runs for each plot. The solid thin line represents the distribution of attacks at the end of the first cycle (initialization).
Bold lines represent the observed (dotted) and simulated (solid) distributions. Note that y-scale is different for plots 16–17–18.
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ig. 4. Comparison of observed vs. simulated (a) mean and (b) standard deviation
imulation. Numbers correspond to plot numbers.

eufchâteau, Guadeloupe (French West Indies, 16◦15′N, 61◦32′W,
ltitude 250 m) between 1990 and 1995. The plots contained 30–42
anana plants (2174 plants/ha, Musa spp., AAA group cv. Cavendish
rande Naine) and were separated by a row without plants. Ini-

ial inoculums of C. sordidus arrived from previous banana crops. At
ach harvest, damages caused by larvae inside the corm were eval-
ated on each banana plant by removing 10 cm of topsoil around
he corm and a band of tissue 7 cm wide and 0.5 cm deep across
he corm at its widest point. The circumference of the corm with
alleries was measured using a tape measure.

.2. Simulation procedures
.2.1. Model validation
The simulation area was a 15 × 15 to 18 × 21 cell grid (cell dimen-

ion: 0.8 m × 0.8 m), according to the number of banana plants in
ach field. Each banana plant belonged to one cell and was sepa-
ated from other plants by two empty cells. Simulations were run

ig. 5. Analyses of the COSMOS model sensitivity to the most influent insect biological pa
ean (white boxes), standard deviation (grey boxes). A range of values was tested for eac

omputed in a boxplot. Each boxplot contains the lower whisker, the lower hinge (first q
hisker. The whiskers extend to the most extreme data point that is no more than 1.5 tim
tributions for each plot. Solid line indicates a perfect fit between observation and

over 200 days, corresponding to the period between two consecu-
tive harvests. Model inputs consisted of daily mean temperature
from a five-year dataset and of initial populations (see below).
Because of the model stochasticity, we performed 100 replicates
for each situation and averaged the results.

For each of the 18 plots used for model validation, the model
was initialised using populations of individuals distributed in the
plot, estimated according to the attacks recorded at the end of the
first cycle for each plant, i.e. the attacked circumference (AC). For
this estimation, we first established a relation to calculate the num-
ber of adults per plant from AC using data from a capture-recapture
study performed in a banana field in Neufchâteau (1996–1997). In
this study, populations had been trapped using pseudostem traps

(Gold et al., 2002), and AC had been measured for each banana
plant. The ratio of the abundance of C. sordidus adults (square-
root-transformed to stabilise the variance) to AC was 0.22 ± 0.07
(F = 18.85; P < 0.01; df = 50). Having calculated the number of adults
at the end of the first cropping cycle in each cell of the 18 grids by

rameters, focusing on two main parameters of the distribution of attacks on plot 8:
h parameter, the other parameters being held constant. The output of 100 runs was
uartile), the median, the upper hinge (third quartile) and the extreme of the upper
es the interquartile range from the box.
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sing this ratio, we set the population age structure, using ratios
f 0.24, 0.48, 0.10, and 0.18 for egg, larvae, pupae, and adults,
espectively (Koppenhofer, 1993). Within each stage the age was
onsidered to follow a uniform distribution. Then, the model sim-
lated the epidemiology of C. sordidus during the second cropping
ycle.

.2.2. Simulation of spatial arrangements of banana plants
We simulated different spatial arrangements of banana plants

hought to have an effect on the time necessary for C. sordidus
o colonise a plot and to cause damage. First, we simulated three
lanting patterns with synchronous banana stages (Fig. 2): (1)
egular planting (2.4 m × 2.4 m), (2) double row planting (0.8 or
m × 2.4 m) and (3) patches of nine banana plants (5.6 m × 5.6 m
etween each patch). The age of banana plants at initialisation was
month. Then, we simulated a regular planting pattern with asyn-

hronous banana plant stages (4; Fig. 2), i.e with different stages
f plants in the same plot at the same time. In pattern 4, plant
tages were randomly set from 1 month (planting) to 9 months (har-
est); this situation is representative of old banana plots, which are
nsynchronised because of the common practice of repeated sucker
election (Tixier et al., 2004; Lassoudière, 2007). For all patterns, 81
anana plants were distributed over a grid of 27 × 27 cells with a cell
ize of 0.8 m × 0.8 m, yielding a planting density of 1750 plants/ha.

At initialisation, different populations of adults of random age
ere equally distributed over the first column of the grid, repre-

enting the beginning of a rapid invasion due to putting an infested
lot in fallow near the tested grid. For each pattern, we computed
he time necessary for at least one adult to reach the column on the
pposite side of the grid, the time-series of the mean intensity of
ttacks of each plant (AC), and the time-series of the percentage of
lants with severe attacks (more than 20 cm of AC) over the entire
eriod of simulation (600 days). Boundaries of grid were closed.
op and bottom edges represented a barrier; left edge the source of
ontamination that is unidirectional. As simulation stopped when
ne adult reached the last column of the grid, effect of right edge is
bsent. This experimental design allowed low edge effects, based
n an infestation from one side to the other.

.3. Sensitivity analyses

In a first step, we used the Morris method (Morris, 1991; Cariboni
t al., 2007; see Appendix A) to discriminate the model parame-
ers having the highest influence on the variability of mean and
tandard deviation of attacks, on four plots with different level of
ttacks (plots 8, 9, 10 and 16). Two ranges of parameter values were
efined for this analysis, the first one corresponding to the uncer-
ainty of estimates according to the literature, the other equally
roportioned from −20 to 20% of the value in Table 1. Parameters
qually discriminated using the two ranges were considered as the
ost influential.
In a second step, the parameters that were the most influen-

ial according to the first discrimination were tested one by one
sing a simple sensitivity analysis, the other parameter values being
eld constant. The model outputs were as before the variability of
ean and standard deviation of attacks. For each parameter, dif-

erent ranges of values were set, from 0 to 1 for biological rates
nd from 0 to an extreme value empirically defined (when model
utputs no longer responded to parameter variations) for the other

arameters. For each parameter value, 100 simulations were per-
ormed and the results arranged as boxplots showing the quartiles
f the output distribution (Arrignon et al., 2007). For all the sensi-
ivity analyses, plot 8 was chosen as representative of the studied
lots, after examination of the first simulations (data not shown).
ling 220 (2009) 2244–2254

3.4. Statistical methods

For each plot used for model validation, smoothed distribu-
tions of the simulated attacks were plotted using 100 replicates of
each simulation and compared with observations; this smoothing
method is issued from Sheater and Jones (1991). Plotting smoothed
distributions instead of histograms allow a better comparison
between simulations and observations. The average distribution
of the simulated attacks was compared to the observated attacks
for each plot using the Kolmogorov–Smirnov (ks) test (Mellin et
al., 2006). If the value of the probability associated to the ks test
is greater than the level of significance (commonly 0.05), the null
hypothesis of conformity (similar distributions) cannot be rejected.
For each plot, the simulated mean and standard deviation of the
distribution of attacks were compared to the observations over
100 replicates. The mean difference between observation and sim-
ulation was calculated using the root mean squared error (RMSE
(Wallach and Goffinet, 1989)).

All statistical analyses were performed with the R software (R
Development Core Team, 2008) using basic packages: “lattice” (for
plotting the distributions of attacks using the kernel density esti-
mate) and “sensitivity” (for sensitivity analysis using the Morris
method).

4. Results

4.1. Model validation

Fig. 3 shows a good agreement between observed and simu-
lated smoothed distributions of attacks for most plots. However,
observed and simulated distributions were different for plots 2, 4,
6, 9, and 17 according to the Kolmogorov–Smirnov test (P < 0.05).
For plots 2, 4, and 6, the model overestimated the frequency of
high levels of attacks while it underestimated low levels of attacks
(Fig. 4). For these plots, mean observed and simulated attack cir-
cumference (AC) were 10–15 and 25–30 cm, respectively. For plots
9 and 17, the model could not simulate the bimodal distribution
of observed attacks. The model predicted well when the level of
attacks at initialisation was relatively low (e.g. on plots 16 and 18,
where the mean observed AC was 0 and 2 cm, respectively); and rel-
atively high (plots 1, 11, 14, where the observed AC was 23–25 cm).
The RMSE between the observed and simulated mean AC of the
18 plots was 7.7 cm; it improved when excluding plots 2, 4, and 6
(3.7 cm). The RMSE of the standard deviation was 2.6 cm for the 18
plots.

4.2. Sensitivity analysis

The Morris method showed that six parameters had a major
influence on mean and standard deviation of the distribution of
attacks: DE, FH, ML, MRL, PE (demographic parameters), and G
(diameter of gallery; Appendix A, Table 1). Since the six parame-
ters were similarly highlighted for the four tested plots, only the
results for plot 8 were showed in Appendix A. PE, MRL, G and FH
had a greater influence than DE and ML. On an extended range of
variation, the increase in PE and MRL linearly decreased the mean
level of attacks. The influence of FH (female fecundity) on the stan-
dard deviation of attacks decreased for more than eight eggs per
week. For increasing values of FH, DE, G, and ML, the mean values
of attacks increased linearly and then plateaued (Fig. 5).
4.3. Simulated effect of spatial arrangements of banana plants

The time necessary to cross the field was considerably higher
for pattern 3 than for the other patterns, while a shorter time was
found for pattern 4 (Table 2). This result remained the same when
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Table 2
Time to cross the plot and mean level of attacks at 300 and 500 time steps for the four spatial arrangements of banana plants illustrated in Fig. 2 (initial population: 50 adults).

Time to cross the plot (in days) ± SE Mean AC at 300 days (in cm) ± SE Mean AC at 500 days (in cm) ± SE

Pattern 1 184 ± 8 2.44 ± 0.08 6.89 ± 0.3
Pattern 2 197 ± 8 2.41 ± 0.09 7.03 ± 0.2
Pattern 3 395 ± 14 2.55 ± 0.08 7.47 ± 0.3
Pattern 4 170 ± 7 6.22 ± 0.16 16.24 ± 0.46
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ig. 6. Evolution of the mean intensity of attacks (a) and percentage of severe attack
f the model was done for 50 individuals at one side of the plot, figuring a massive

he initial population varied; times were reduced by half when the
opulation varied from 50 to 400 individuals (data not shown).
ean levels of attacks at 300 days (harvest of first cycle) and 500

ays (harvest of second cycle) were similar for planting patterns 1,
and 3 and twice as high for pattern 4.

Fig. 6 shows that the mean level of attacks increased to a higher
evel for pattern 4 than for patterns 1, 2, and 3. For patterns 1, 2,
nd 3, we observed a small inflexion of the mean level of attacks
etween 300–350 days and 500–550 days after planting (Fig. 6a).
he percentage of plants with severe attacks (AC > 20 cm) increased
aster for planting pattern 4, followed by patterns 3, 2, and 1
Fig. 6b).

. Discussion and conclusion

The individual-based COSMOS model accurately predicted the
istributions of attacks of C. sordidus on banana plants for 13 out
f 18 plots. This quality of prediction is attested for a large range
f initial levels of attacks. The RMSE value of mean attacked cir-
umference (7.7 cm) may be the consequence of overestimation of
hree validation plots and/or measurement error in the field. Fur-
hermore, in the tested range of attacks, the standard deviation of
he attacks in the plot was well maintained. Measurement error in
he field could be due to an overlapping of some galleries in the
ame plant or to the presence of some galleries above or below the
bservation area. For three validation plots out of 18, the model
verestimated the mean level of attacks. This overestimation could
e explained by a greater predation of eggs in these plots than is
ccounted for by the model, predation of eggs being a major param-
ter according to the results of the sensitivity analyses. A highly
ariable density of Pheidole spp., a possible predator of C. sordidus

ggs, was found among sites in a field trial in Uganda, ranging from
.1 to 38.4 individuals per trap (Abera-Kalibata et al., 2008). Based
n a recent survey in French West Indies, it seems that several
pecies of ants are present in banana fields, including Pheidole spp.
Duyck, P.-F., pers. com.).
greater than 20 cm) (b), resulting from C. sordidus infestation of a plot. Initialization
tion from a neighboring field.

COSMOS compiles almost all of the existing knowledge about
the biology of C. sordidus, benefiting from many experimental stud-
ies (Gold et al., 2001 and references therein). Nevertheless, our
sensitivity analyses highlight the importance of better specifying
key biological parameters to improve predictions, such as egg pre-
dation, adult mortality, and density-dependent effects. The level
of egg predation is a key factor but is variable (Abera-Kalibata
et al., 2008), which calls for further investigations. As explained
by Carey (2001), little is known about mortality and longevity of
insects, whereas they are fundamental epidemiological processes.
The effect of density dependency of egg laying is also an influen-
tial parameter (Cuillé, 1950; Koppenhofer, 1993; Abera-Kalibata et
al., 1999), but further studies should explore the whole range in
which density dependency is established. It is also important to fill
the lack of available data on predation rate of adults in the field,
following the example of Sutherst et al. (2000) on ticks. For that
purpose, field and laboratory experiments are currently conducted
in French West Indies to identify the main predators of C. sordidus,
and quantify their predation rates (Duyck, P.-F., pers. com.).

Our simulations on the effect of different spatial arrangements
of banana plants on the epidemiology of C. sordidus show that
planting in patches with a large distance between patches should
limit the time necessary for the pest to colonise a new field.
Indeed, in this case, only a small proportion of individuals is able to
invade new patches. In contrast, the simulations indicate that the
severity of attacks may increase when banana plants are planted
in patches. Potting et al. (2005) in a modeling study on herbi-
vores, found the same result, with a higher level of damages in
patches than in rows. The pattern 3 figures patches with high
concentration of plants. The hypothesis of resource concentration
has been studied by Levine and Wetzler (1996). They have tested

with an individual-based model the effect of planting decisions
on attack frequencies by herbivorous insect pests, and they con-
cluded that probability of host plant attack emerged partly as
function of density of plants within patches. Furthermore, they
estimate that probability of attack is function of radial distance
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etection of host by insect. In COSMOS, radial detection is defined
y weak dispersal abilities of adults, as defined by literature. These
eak abilities contribute also to increase intensity of attacks inside
atches. Planting banana regularly or in double rows resulted in
imilar simulated colonisation time and intensity of attacks. This
s probably because in the case of double row spacing, the slow
preading of C. sordidus in large interstices between rows was
ompensated by fast spreading in small interstices inside rows.
nsynchronised banana plantation decreased the time of colo-
ization of the plot by C. sordidus and increased the severity of
ttacks. In this pattern, at every time step, C. sordidus can find
tages of banana plant suitable for egg laying. In contrast for the
ther patterns, the inflexion of mean AC observed at t = 300–350
ays and t = 500–550 days may be explained by the lack of stages
f banana plant suitable for egg laying after harvest. For man-
gement purposes at the landscape scale, farmers should avoid
ransforming a heavily infested field into fallow close to an unsyn-
hronised field free of C. sordidus. At the field scale, planting in
atches would limit the time of colonisation but after two or three
ropping cycles, attacks might be severe. Such a strategy might be
uitable for cropping systems with a limited number of cropping
ycles. For cropping systems with more cropping cycles, regular
nd double row planting patterns of plantation would be more
uitable.

The choice of the model type is governed by both spatial charac-
eristics of habitat and insect traits. In a spatial insect model figuring
nfestation of melon by aphids, Lopes et al. (Lopes et al., 2009)
ntroduced space implicitly because they consider local movement
s negligible. In that model, populations of aphids are described
y partial differential equations, figuring the continuous devel-
pment of populations. In our case, weak dispersal abilities of C.
ordidus have required to introduce space explicitly. Populations of
. sordidus are described at individual level because of its discon-
inuous development and the presence of all stages with different
ehaviour at the same time. These results show that COSMOS is
n interesting tool to design planting schemes for the control of
anana weevil. IBM models have rarely been used for such pur-
oses on pests. Generally, they have dealt with spatial heterogeneity
s a means of controlling pests by simulating the incorporation of
on-attractant crops in the field (Potting et al., 2005; Choi et al.,
006).
The basic principles of the epidemiology of C. sordidus were
uccessfully integrated in the COSMOS model. Further steps in
eveloping this model should consist of integrating more manage-
ent practices able to influence the epidemiology of this pest and to

ontribute to Integrated Pest Management (Huffaker and Gutierrez,

ig. A.1. Sensitivity analysis on mean (a) and standard deviation (b) of attacks of C. sordid
f estimates according to published experimental studies.
ling 220 (2009) 2244–2254

1999, p. 682), such as the use of resistant varieties, traps, and bio-
logical control agents, as suggested by Gold et al. (2001). This could
be done by designing a sub-model that accounts for trapping. For
this, existing algorithms (Byers, 1993; Branco et al., 2006) may be
adapted to COSMOS. Furthermore, to design IPM schemes at the
farm scale, the next step will be to upscale the model to a group of
fields and to account for interfaces between fields.

The COSMOS model, by capturing the population trend of a trop-
ical pest, is a powerful tool to analyse population processes of this
pest in various management conditions. COSMOS can be seen as
a ‘virtual laboratory’ (Charnell, 2008) for studying different agri-
cultural practices that can influence the epidemiology of a pest.
Emergence of population spatial properties from individual biology
is the main driver of our study, as we consider that these prac-
tices will influence the individual behaviour of pests. In that way,
IBMs can be applied to several pests, for which the spatial hetero-
geneity of agricultural practices influences biological parameters of
individuals.
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Appendix A.

Twenty biological parameters of the insect (k “factors”, accord-
ing to the Morris method) were tested, considering their possible
influence on the variability of mean and standard deviation of
attacks. Each tested range was divided into four levels, corre-
sponding to the resolution (�) at which the factor was examined.
Following the method, for each factor, one of the four possible levels
was randomly chosen, leading to a first sample. A first sensitivity
run was done on this sample that consisted of 100 replicates of a
one cropping cycle (200 time steps) simulation (see Section 3.2);
the results were further averaged over the 100 replicates. Starting

from the first factor sample, similar sensitivity runs were performed
by considering successively each factor and increasing (or decreas-
ing) its value by the quantity �. The combination of these (k + 1)
sensitivity runs is called a trajectory and has to be repeated r times,
thus leading to r(k + 1) sensitivity runs.

us. For each parameter, the tested range was defined according to the uncertainty
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ig. A.2. Sensitivity analysis on mean (a) and standard deviation (b) of attacks of C
0% of the value in Table 1).

The elementary effect (EEi) of a parameter � on a trajectory j was
alculated as:

Ei,j(�) = yj(� + ei�) − yj(�)
�

(A.1)

ith ei = ±1 and yj the model output, here the mean or variance of
ttacks in the plot.

Thus, we generated a design experiment of 20 levels of param-
ters on 30 trajectories, which corresponded to a series of 630
ensitivity runs. The mean � and the standard deviation � of the
bsolute values of the elementary effects over the trajectories were
sed as sensitivity measures to ascertain the importance of the fac-
ors. A large � indicates a large overall influence of the parameter
nd a large � implies a dependency of the parameter on the value
f the other parameters through non-linear or interaction effects
Figs. A.1 and A.2).
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