Carbon, water and energy balance of Rubber ecosystem

Philippe Thaler, Frédéric Gay, Pongpan Siripornpakdeekul, Poonpipope Kasemsap, Olivier Roupsard, Arak Chantuma Jean-Marc Bonnefond, Naruenat Chairungsuee, Boonthida Kositsup and Sumit Kunjet

Rubber ecosystem
A major tree crop in Thailand > 2.7 M ha in 2007, world > 10 M ha. 80 % of the area in the Southern region

Land use change: the North-Eastern rush (drier area). Already 300,000 ha in the E and NE, but plans are for 1 M ha to be planted.

Mainly smallholders (< 3ha per holder)
Monoclonal plots with one major clone, RRIM 600

Planting density 500 to 600 t/ha
Main product is latex, but wood is important too
Life-cycle shortened from 30 to 20 years

Impact of rubber plantations on environment and particularly on water balance?

The project
Rubber Flux aims at providing a complete picture of CO₂, water and energy budget of a rubber plantation in Eastern Thailand. The experiment is situated at the Chachoengsao Rubber Research Station, about 140 km east of Bangkok. The observation site is in a 6 ha plot at the center of the 350 ha station.

The site
The plot is a monoclonal stand (clone RRIM 600). Trees were 14 years old in 2008. The average height was 20.5 m and average girth at 1.7 m was 62 cm.
Initial planting density was 500 trees/ha and actual stand density was 430 trees/ha in June 2008. Trees are tapped for latex production for 7 years.
Tree water status, sapflow & soil water balance

Partitionning of total water flux between soil and understorey evaporation (E) and stand transpiration (T)

- Sapflow measured by heat dissipation method (Granier 1985). 20 mm long homemade probes (calibrated by gravimetry).
- Trees sampled according to distribution of trunk within the plot to calculate stand transpiration.
- On a tree scale, daily time-course of leaf water potential measured across the canopy together with climatic data and soil moisture content to understand regulation of water use by the tree.
- Petiole sensitivity to embolism studied, as the possible limiting factor for hydraulic conductance in rubber tree (Sangsing 2004).

Leaf and canopy photosynthesis, measurement & modelling

Estimation of parameters of Farquhar’s model of leaf photosynthetic capacity

- Maximal carboxylation rate \(V_{c_{\text{max}}} \) and maximal electron transport rate \(J_{\text{max}} \) were estimated by fitting \(CO_2 \) response curve of net photosynthesis \(A/C_i \) curve.

Next: Integration at canopy scale comparing several models to describe canopy structure and light interception.

CO2 and water fluxes

Flux measurements by eddy covariance

- \(CO_2 \) and water fluxes are measured by eddy covariance (ED).
- ED methodology adapted from experience in other tropical tree crop plantations, (coconut tree in Vanuatu, eucalypt in Congo).

- The flux tower is 25 m high.
- Sonic anemometer Young 81000V 20 Hz, open path gas analyser LI-7500. Data-logging and pre-processing by the "Tourbillon" software (INRA, France). Post-processing by EdiRe software (U. of Edinburgh, UK).

Weather station

- Rn, Rg, PAR, diffuse PAR, reflected PAR, Air T\(^\circ\), Rh, wind speed, wind direction, rainfall, vertical profile of air temperature (TCs).

Energy balance is assessed by measurements of net radiation (Rn) and estimation of the energy partitioning among heat fluxes and heat storage.

Net primary productivity

How much carbon in trees biomass and in soil?

- Dynamics of above-ground biomass assessed by tape measurements of trunk diameter, tree height and allometric relationships.

- Litter traps used to assess both litter accumulation and, together with fish-eye pictures, LAI.

- Root biomass, fine root production, mortality and turn-over assessed by combination of root observation window, ingrowth cores and sequential coring.
Stand transpiration
Dry season Feb 2007
Leaf fall occurs in January, only some leaf remain. Re-foliation is initiated without delay and completed within two weeks

Temperature response of maximum CO₂ assimilation rate (Amax) in rubber leaf.
The full range of possible temperature in Asia areas suitable for rubber cultivation is covered.

CO₂ flux May-Sep 2007, corrected, no gap filling.

CO₂ daily flux May-Sept 2007, corrected, no gap filling

Conclusion:
Beyond the evaluation of the fluxes, our design provides information on the partition among the components and functions of rubber plantation ecosystem. Thereby, the validated CO₂ and H₂O fluxes will be used to model gas exchanges of one of the most important tree-crop ecosystem in tropical Asia, according to climate and other environmental parameters as well as crop management.

Developments:
- Continuous measurements of soil respiration with a multichamber system, modelling, upscaling.

“Hevea Research Platform in Partnership”, a Thai-French co-operation.
Cirad France, INRA France, Kasetsart University Bangkok, Rubber Research Institute of Thailand, Prince of Songkla University Hat Yai,