NON-INDEPENDENCE BETWEEN MARKERS ON HOMOEOLOGOUS CHROMOSOMES IN AN
INTERSPECIFIC ALLOPOLYPLOID COTTON RILS POPULATION

Lacape JM.(1)

(1) UMR DAP, CIRAD, Montpellier, France, christopher.viot@cirad.fr
(2) Bayer BioScience N.V., Gent, Belgium, (3)Bayer Cropscience, Bioscience Research,
Lubbock, USA, (4)CSIRO Plant Industry, Black Mountain, Canberra, Australia

Cotton, as the world’s main natural textile fibre, is the focus of many studies for
genetic improvement of fibre quality. Two allotetraploid (AtDt genome, 2n=4X=52) species
dominate world production: G. hirsutum (Gh) with medium fibre quality and G. barbadense
(Gb) with high fibre quality, accounting for 95% / 3% of production respectively. A RIL
population originating from a Gh-Gb cross is the base material of the CIRAD-Bayer
CropScience-CSIRO ANR research project Cotton_RILs, aiming at the genetic and genomic
dissection of cotton fibre quality for introggression of high fibre quality genes of
Gb into Gh germplasm. Until now, classical breeding did not succeed at satisfactorily combining traits
from both cotton species, in spite of high apparent synteny conservation between their
chromosomes.
The fixed heterozygosity of allopolyploids is supposed to result in gene expression changes,
or expression subfunctionalization, a partitioning of the ancestral expression domains among
duplicate genes. It is hypothesized that allopolyploids should be subject to more genetic and
epigenetic regulatory changes than autopolyploids.

We report here on evidence of interactions between markers on pairs of homoeologous
chromosomes in the Gh-Gb RIL population studied (140 lines genotyped with 800 markers,
assembled in a saturated map of 26 linkage groups). In five of the 13 homoeologous
cromosome pairs (c12-c26, c6-c25, c11-c21, c3-c17 and c13-c18), markers from
homoeologs displayed unexpectedly high linkage (LOD from 9 to 14). Such linkage was not
observed between chromosomes from non-homoeologous pairs. The association concerns 1-
3 markers from one chromosome against stretches of 5-8 or more markers on the
homoeolog. Gametic disequilibrium (GD) has been assessed pairwise between all markers.
Positive GD is highly dominant between markers of homoeologous chromosomes, but
negative as well as positive GD are observed between markers of non-homoeologs, with
uneven distribution. In positive GD, frequencies of Gh-Gb allelic combinations are very low,
meanwhile in negative GD, there is uniform low frequency of Gb-Gb allelic combinations.

Diverse genetic and epigenetic mechanisms have been characterized in polyploid plants,
including unequal expression of duplicate genes, segregation distortion and restricted
recombination; in cotton, lesser retention of Gb alleles is a common feature of advanced-
generation backcross or RIL interspecific populations. Our results support hypotheses of
intergenomic incompatibility, with selection during inbreeding that favoured elimination of
Gh-Gb allelic combinations that were too conflicting regarding the expression of duplicate
genes.

Keywords : Cotton, interspecific RILs, intergenomic incompatibility, gametic disequilibrium
This study reports on evidence of interactions between genes on several pairs of homologous chromosomes in a population of interspecific RILs from a cross between allotetraploid cotton species Gossypium hirsutum and G. barbadense. Very high LOD scores were needed to separate some groups of markers from two homoeologs into independent linkage groups and positive gametic disequilibrium at higher frequency than between non-homoeologs was observed.

Our observations can be explained by selection acting against certain G. hirsutum-G. barbadense allelic combinations in homoeologs during inbreeding generations following the interspecific cross. These results support hypotheses of intergenic incompatibility, with elimination of G. hirsutum-G. barbadense allelic combinations that conflict in the expression of duplicate genes.

Cotton, as the world’s main natural textile fibre, is the focus of many studies for genetic improvement of fibre quality. Two allotetraploid (AIDI genome, 2n=4x=52) species, G. hirsutum (GB) and G. barbadense (GB) maintain unique qualities, higher yield potential and broader environmental adaptability, and G. barbadense (GB) with high quality fibre but lower yield potential and adaptability, dominate world cotton production with a 95% / 3% share respectively. Despite their common origin (Fig.1) and the high apparent synteny conservation between their chromosomes, classical breeding has not succeeded in satisfactorily combining traits from both cotton species, possibly due to genomic incompatibility resulting in particular from a partitioning of gene expression between the two subgenomes (subfunctionalization) that differs in the two species. A test for this hypothesis could be the existence of interactions between genes present on homoeologous chromosomes from interspecific Gh-Gb plants.

Material and Methods

A RIL population originating from a G. hirsutum x G. barbadense cross in F6 to F8 inbreeding generation was genotyped (140 lines x 800 markers - 517 SSR, 281 AFLP, 2 morphological markers, assembled in a saturated map of 26 linkage groups) as part of the CIRAD-Bayer CropScience-CSIRO, ANR-funded, research project Cotton_RILs (Lacape et al. 2007, 2009).

LOD values were calculated with JoinMap 4 (Kyazma B.V., Wageningen, Netherlands). Gametic disequilibrium (GD) was measured with the standardized D’ calculated as in Lewontin (1988) pairwise between all markers; GD significance test used was the conditional 2-sided p-value (Kulinskaya 2009) calculated with LDtests R-package (Lewin 2008); calculation of GD parameters was made on a subset of 656 markers chosen so as to have no more than one marker in each 1 cM bin. Threshold for GD between marker pairs to be considered as informative was p<0.05 and |D’|>0.5.

Results and Discussion

Independence LODs: In five of the 13 homoeologous chromosome pairs (c12-c26, c6-c25, c11-c21, c3-c17 and c13-c18), some groups of markers from homoeologs necessitated the use of unexpectedly high LOD thresholds (from 9 to 14) to separate in independent linkage groups (Tab. 1). Such linkage is not observed between chromosomes from non-homoeologous Ai-Dt chromosome pairs (p>0.01 for the difference), as well as from each sub-genome independently. Taking LOD=3 as a threshold, the association concerns 1-3 markers from one chromosome against stretches of 5-8 or more markers on the homoeolog; such LOD values normally correspond to recombination frequencies lower than 0.10, indicative of synteny at close distances of 10 cM or less.

Gametic disequilibrium (GD): Positive GD is highly prevalent between markers on homoeologous chromosomes, while between markers of non-homoeologs, negative as well as positive GD were observed with a slight excess of negative GD (Fig. 2). Between chromosomes intra each Ai or Dt sub-genome, distribution of GD was very similar to that between non-homoeologs Ai-Dt (results not shown).

The threshold of |D’|>0.5 corresponds in the case of syntenic markers to distances <~15 cM between pairs of markers (results not shown).

Positive GD is characterized by lower frequencies of Gh-Gb allelic combinations for Ai-Dt marker pairs, relative to global frequencies, meanwhile in negative GD, there is uniform very low frequency of Gb-Gb allelic combinations (Fig. 3). These altered frequencies can be considered as indicative of selection acting against recombiant (Gh-Gb) allelic associations for markers in positive GD, and against Gb parent (Gb-Gb) allelic associations and in favour of ‘recombitant’ (Gh-Gb) allelic associations for markers in negative GD.

The selection against Gh-Gb allelic associations in pairs of homoeologous chromosomes hints at incompatibility between some genes.

Some correspondence can be observed between regions with markers in positive GD and loci of homoeolog markers (Fig. 4), indicating that in some cases at least, positive GD could link homoeologous chromosomes from the two subgenomes.

Such direct interactions between homoeolog genes can be related to the differential expression of duplicate genes, or subfunctionalization, instead of additivity, that has been characterized in cotton and other allotetraploids (Doyle et al. 2008). Thus, differences of adaptation of structural genes could interact with the gene network regulating the subfunctionalization. More generally, the results indicate that there is notable incompatibility between some homoeologous regions of the genomes of G. hirsutum and G. barbadense.

References

